
DATA SHEET

CHARACTERISTICS - With no electrical excitation, the input shaft & output shaft freely rotate. With electrical excitation, the input shaft becomes coupled to the output shaft. Torque is proportional to input current (see torque graph), and independent of slip RPM. While the load torque is less than the output torque, the clutch drives without slip. When the load torque is increased, the clutch will slip smoothly at the torque level set by the coil input current.

Torque range 2 to 70	lbin.
Maximum RPM 1000	RPM
Maximum heat dissipation 50	watts
Maximum case temperature 160	degrees F
Maximum overhung load 80	
Output shaft inertia \dots 66 x 10 ⁻⁵	lbinsec ²
Response (unforced) 90	mSec.
Response (forced) 45	mSec.
Weight 17	lbs.

- Use the lower curve when approaching a current value from 0 amps. Use the upper curve when approaching a current value from 100% rated current.
- Rated D.C. coil voltages available: 6 VDC (yellow leads), 12 VDC (green leads), 24 VDC (red leads), 90 VDC (blue leads).

CLUTCH PERFORMANCE

TORQUE: At the rated voltage, the clutch will draw 100% of the rated input current. Output torque will be 70 lb.-in.

POWER SUPPLY: A "constant-current" D.C. power supply is recommended for the best accuracy in open-loop control systems. This type of power supply will maintain a fixed (but adjustable) output current, regardless of the temperature of the clutch, so output torque is constant (but adjustable).

HEAT DISSIPATION: The clutch can dissipate 50 slip (thermal) watts continuously. For continuous slip, calculate the heat input by the formula :

HEAT (watts) = SLIP RPM x TORQUE (lb.-in.) x 0.012

Using the above formula: At rated torque, the maximum continuous slip RPM (input RPM - output RPM) is 60. The clutch can dissipate higher amounts of heat for short periods of time, but the average must not exceed 50 watts. The case temperature must never exceed 160 degrees F.

INSTALLATION INFORMATION

Do not drop, or strike with a hammer. Keep away from fine metal filings and fine metal chips. Shield from liquids.

Do not attempt to remove the clutch shafts.

All pulleys, sprockets, couplings, etc. must mount as slide fits. Use a puller to remove stuck components. Never pry or hammer to install or remove components.

Center your set screw on the flats of the clutch shafts.

Always use a flexible coupling when connecting the shafts of a rigidly mounted clutch to the shaft another rigidly mounted device. Precisely align both shafts.

Always electrically ground the clutch.

Magnetic Particle Brakes & Clutches Hysteresis Brakes & Controls